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Abstract-The advances in microelectronic engineering have

rendered massively dktributed computing networks practical

and affordable. This paper describes one application of this
distributed computing paradigm to the analysis and design of mi-

crowave circuits. A distributed computing network, constructed
in the form of a neural network, is developed to automate the
operations typically performed on a normalized Smith chart. Ex-
amples showing the use of this computing network for impedance
matchhg and stabilizing are provided.

I. INTRODUCTION

T HE MANUAL analysis and design of microwave cir-

cuits are generally tedious and error prone. Recently,

computer-aided design (CAD) methodology has established

its indispensable role in microwave circuit engineering activ-

ities. Following the advances in microelectronic engineering

technologies (e.g., VLSI), parallel processing has become a

practical and affordable way to conduct microwave CAD

operations. Massively distributed computing networks, also

called artificial neural networks, have been developed as a

special form of parallel processing [1], [2]. A preliminary

description of our first attempt to apply such a computing

network to microwave design and analysis problems has been

reported in [5]. This paper further elaborates the details of this

work.

The objective of this paper is to investigate the application

of a massively distributed computing network to microwave

engineering. The vehicle for this investigation is the de-

velopment of a massively distributed computing network to

perform typical Smith chart operations. Typical problems

that can be analyzed using a Smith chart include impedance

matching, stability analysis, etc. [3]. A Smith chart represented

by a numerical matrix has been developed for conventional

computing environments [4]. The Smith chart was selected as

a research vehicle here because it is simple yet it provides an

important tool for microwave analysis and design.

Section II of this paper provides a brief background of

massively distributed computing networks. Section III presents

a scheme to map a graphical Y-Z Smith chart onto a mas-

sively distributed computing network. Section IV describes

the programming methodology of this computing network for

microwave engineering problems. The distributed computing

network is first programmed to mimic the operations of a
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Fig. 1. The conceptual structure of a neuron.

designer to provide a conceptual framework for its function-

ality. This is followed by a modification, described in Section

V, which takes practical implementation into consideration.

Examples of the use of this computing network to design

impedance matching circuits and stabilizing circuits are given.

II. MASSIVELY DISTRIBUTED COMPUTtNG NETWORK

The following description provides the necessary back-

ground to understand the technique developed in this paper. A

general description of the distributed computing methodology

can be found in [1], [2]. Massively (distributed computing

networks are a specific form of a nonlinear system that maps

an input to an output. A distributed cclmputing network can

be considered as an asynchronous arra’y processor with very

simple processing elements (i.e., neurons). Fig. 1 shows a

typical processing element, referred to as a neuron in the

following discussion, with n inputs (ZI – z.) and one output

(Q). An input can be excitatory (indicated by a solid circle)

or inhibitory (indicated by a hollow circle) and is assigned a

weighting factor Wj. A threshold value, T, is associated with

the neuron. The function of a neuron can be described by the

following equation which combines inputs il – in to form an

overall input value 1

n

(1)
j=l

where Wj is positive for an excitatory input and negative for

an inhibitory input. If the overall input value 1 is above the

threshold vahte T associated with the neuron, the neuron fires

and an output of Q = 1 is produced. Otherwise, the output

remains at Q = O. A neuron is also associated with a time

constant (T) that determines its output response time.

While the operation of a conventional computer is controlled

by a series of instructions, called a program, a massively dis-

tributed computing network is programmed by wiring up a set

of neurons and setting the weights of these interconnections.
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Fig. 2. The physical implementation of a dk.tributed computing network

(a) a neuron implemented by an operational amplifier; (b) the neuron transfer

function.

The function of a distributed computing network can only be

determined by considering the network as an integrated entity.

No meaningful information can be extracted by examining a

neuron isolated from its colleagues.

A distributed computing network is typically implemented

by a hardware analog circuit [2]. Fig. 2 shows the use of

an operational amplifier configured as an integrating adder to

carry out the function of a neuron. As shown in Fig. 2(a),

the input weighting of such a neuron can be controlled by

choosing appropriate resistance values connecting its inputs

to the outputs of other neurons. The time constant (~) of

this neuron is determined by the capacitance connected at the

operational amplifier input. Fig. 2(b) shows the input-output

transfer function of a neuron.

III. MAPPING OF A Y-Z SMITH CHART

A Y-Z Smith chart is shown in Fig. 3. For clarity, only

ccmstant-resistance and constant-conductance circles are pro-

vided in Fig. 3. Resistance and conductance circles are shown

with solid and dotted lines, respectively. It should be noted

that the pure resistancelconductance line (indicated in the

figures by a bold line), which is a special case of the constant-

resistance/conductance circles (zero reactance/susceptance), is

also included in this Y-Z Smith chart. Though only a sufficient

number of circles for the explanation of this novel computing

paradigm are provided in Fig. 3, the scheme to be described
can be readily extended to any desired precision by adding

circles to the Y-Z Smith chart.

Since most operations performed with a Smith chart

are carried out by tracing circles and reading the
impedance/admittance values at their intersections, the

Fig. 3. An example Y-Z Smith chart showing the intersection neuron place-

ment.

j=l 2 3
i=l

‘: M

f

2 [
3 i

I
4 ,.,,, ,,,,, ,,,
5
6,,.,.,,,,

,7

.........

‘“”””””””””””””””””””””+

““”””””””””......
Fig. 4. An unfolded rectilinem version of the Y-Z Smith chart mapped onto
a dktributed computing network.

distributed computing network must be designed to perform

these activities. As seen in Fig. 3, the resistance and

conductance circles intersect each other and form a

set of cross-over points on the Y-Z Smith chart. The

impedance/admittance values at these cross-over points can

be found by identifying their locations on the Y-Z Smith

chart. A neuron, called an intersection neuron in the following

discussion, is placed on each of these cross-over points. For

the desired precision, it is reasonable to assume that there are

identical numbers of resistance and conductance circles. The

modification of this mapping scheme is straightforward if this

assumption has to be removed for any reasons.

In order to clearly show the structure of the distributed

computing network and its detailed interconnections, it is

unfolded into a rectilinear graph as shown in Fig. 4. As shown

in Fig. 3, if the conductance and resistance circles are labeled,

beginning with the largest circles, i and j, 1 s i, j ~ n (n =

7 in Fig. 3), respectively, a cross-over point then acquires a

pair of coordinates [i, j]. This coordinate system is retained
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Fig. 5. A conceptual framework of a dktributed computing network showing the snapshots of its operations: (a) t = T; (b) t= 2T; (c) t = 3T.

when the chart is unfolded in Fig. 4. It can be observed from

Fig. 3 that, the points on the pure resistance/conductartce line

are created by two circles tangent to each other. However, a

pair of resistance and conductance circles cross over at two

points, and thus there are two impedance/admittance values

(and neurons too) associated with each pair of coordinates [z,

j ]. In the following discussion, the companion intersection

neurons on the upper and lower half planes of the chart are

distinguished by identifying them as IV[i, -j] and N’ [i, j],

respectively.

IV. CONCEPTUAL FRAMEWORK

Based on the general topology in Fig. 4, the distributed

computing network is programmed to mimic the way that

a designer uses a Smith chart. This configuration, as shown

in Fig. 5(a)–(c), is important in that it directly performs

the operations and thus provides a conceptual framework

for programming a distributed computing network. It will

show how this development will evolve into a practical

implementation. For simplicity, Fig. 5 only shows the upper

half plane of the Y-Z Smith chart. The distributed computing

network is first modified as follows to provide a selection

of multiple functions (e.g., impedance matching and sta-

bilizing). In addition to the intersection neurons shown in

Fig. 4, an excitatory auxiliary neuron (E,AN) and an inhibitory

auxiliary neuron (IAN) are added to each row and each

column. An inhibitory auxiliary neuron is also added to the

pure resistance/conductance line of the network. Neurons

are interconnected by solid lines (columns) or dotted lines
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Fig. 6.
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Fig. 7. The relationship between an inhibitory nenron and its associated

neurons.

(rows). For clarity, a group of interconnected neurons in

which a neuron excites (or inhibits, in a negative sense)

other neurons is symbolically shown in Fig. 5 by connecting

them to a summing unit (+). The physical implementation

of this relationship is provided in Fig. 6 by showing their

interconnections and associated weights. It should be noted

that the output of a neuron is also fed back to itself for

self-support. The reason for this will be discussed later. Each

neuron also has an external input (not shown) which can be set

by the user. Furthermore, a global inhibitory neuron (–), which

receives the outputs of all intersection neurons and sends back

an inhibitory signal to them when its threshold is exceeded,

is included. The relationship between the global inhibitory

neuron and its associated neurons is provided in Fig. 7.

The next step in programming the distributed computing

network is to set its parameters, which are the threshold values

of the neurons, the time constants of the neurons, and the

interconnection weights. It will be obvious in the following

discussions that the relative magnitudes of these parameters,

rather than their real values, are critical for the operation of

this distributed computing network.
The parameters for the distributed computing network in

Fig. 5 are summarized in Table I. The inhibitory auxiliary

neuron of the pure resistance/conductance line is turned on

by its external input for the impedance matching opera-

tion. It will be shown later that because of the connection

of this inhibitory auxiliary neuron to the neurons in the

pure resistance/conductance line (see Fig. 6), the pure resis-

tancelconductance line does not participate in the impedance

TABLE I

PARAMETERS FOR THE DISTRIBUTED COMPUTING NETWORK SHOWNIN FIG. 5

Thresholds

Intersection, inhibitory or excitatory auxilia~ neuron 1.5

Global inhibitory neuron 4.5

Time Constants

Intersection neuron IT

Iabibitory or excitato~ auxiliary neuron 0.5T

Global inhibitory neuron o.5’r

External input + intersection neuron 3

External input + cnmpanion neuron (till Snrith chart onty) -1

External input + inhibitory or excitatory auxiliary neuron 2

Intersection neuron + intersection neuron (except itselt) 1

Intersection neuron + itself 4

Excitatory auxiliary neuron + intersection neuron 1

Inhibito~ auxiliary neuron + intersection neuron -1

Intersection neuron + global inhibitory neuron I 1

Global inhibitory neurnn + intersection neuron -4

matching operation. This is needed because the participation

of the resistanceiconductance line in an impedance match-

ing process will result in a lossy circuit which is normally

undesirable.

Two neurons, JV[i, j] and N[4, 4], representing the original

impedance and the impedance to which it is to be matched,

respectively, are turned on by applying external inputs to

them. The threshold value of an intersection neuron and the

weighting factor of its external input are thus set to 1.5 and 3,

respectively. After the time constant (IT) of the intersection

neurons, they fire and produce outputs of 1. A snapshot of the

distributed computing network at t= lr is shown in Fig. 5(a),

in which a shaded circle indicates a firing neuron. The firing of

neuron lV[i, j] provides an excitatory signal of 1 to all neurons

in row z and column j. Meanwhile, similar effects are imposed

on all neurons in row 4 and column 4 by the firing of neuron

lV[4, 4]. Some thinking will reveal that the output of neuron

iV[4, 4] to the intersection neurons associated with the pure

resistancelconductance line will be canceled by the inhibitory

input from its inhibitory auxiliary neuron. Because of the

threshold value of the neurons, which is 1.5, the excitatory

signals have only an effect on neuron N[4, j], which will

receive a total input of two. The threshold of neuron IV[4, j]

is exceeded and it fires at t = 27 (Fig. 5(b)). The firing of

neuron lV[4, j] boosts the inputs of the intersection neurons

at column j and row 4 to two. All the intersection neurons

on row 4 (a conductance circle) and column j (a resistance

circle) are thus turned on at t = 37 (Fig. 5(c)). This operation

is comparable to what a designer will do on a Smith chart for

impedance matching.

An impedance matching circuit can be determined by trac-

ing the highlighted circles at this moment. However, it can

be easily seen from Fig. 5(c) that every intersection neuron

now has a minimum input value of two and hence all of them

will be turned on eventually. The global inhibitory neuron is

provided to solve this problem. The threshold value of the

global inhibitory neuron is selected so that it will remain

idle when less than five neurons are turned on. The multiple

neurons on the firing column and row in Fig. 5(c) raise the

global inhibitory neuron input to a value beyond its threshold
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which is 4.5. The inhibitory neuron then fires and sends an

inhibitory signal, which has a weight of –4, to all intersection

neurons. Because of the smaller time constant (0.5 r) of this

global inhibitory neuron, the inhibitory signal will stop the

neurons, which remained off to this time, from being turned

on. This inhibitory signal has no effect on the neuron already

turned on since it is canceled out by self-supporting excitatory

signals generated from themselves (see Fig. 6). The distributed

computing network will thus stay at this stable state until it

is reset.

Tracing the path consisting of the neurons in the firing

column j and row 4 will identify neurons N[4, j] as the

cross-over point of the resistance and conductance circles. The

location of neuron iV[4, j] on the Smith chart determines the

topology and value of impedance/admittance that should be

added to the circuit. A detailed description showing the simple

steps in using such a result to form the matching circuit can

be found in [3] and will not be elaborated here.

The distributed computing network shown in Fig. 5 per-

forms impedance matching by locating the cross-over point(s)

on the Y-Z Smith chart between a resistance circle and a

conductance circle. This capability can be extended to perform

the design of a stabilizing circuit. Given a certain circuit

with K < 1 (i.e., potentially unstable), the calculation of a

stability circle can be used to identify a resistance circle or

a conductance circle as the boundary of the unconditionally

stable region.

Referring to Fig. 8, suppose a resistance circle j is selected,

the excitatory auxilimy neuron of column j and the neuron

IV[4, 4] (Z = 1) are turned on by their external inputs, re-

spectively. On the other hand, the inhibitory auxiliary neurons

of row 4, which corresponds to the conductance circle that

goes through Zo = 1, are turned on by its external input.

The process of the distributed computing network moving

into a stable state is similar to what was described for

impedance matching. The only difference is that the network

now finds the cross-over neuron between column j and the

pure resistance/conductance line instead of a conductance

circle. Tracing the firing column and resistance/conductance

line will find the value indicating the resistance that is required

to be added to stabilize the circuit. The final status of the

computing network is shown in Fig. 8.

The distributed computing network shown above has a

number of shortcomings and is only useful as a conceptual

framework. First, the neuron at the intersection of the firing

column and row needs to be located manually by tracing

them. In addition, a global inhibitory neuron is needed; this

makes the implementation difficult. Furthermore, the fact that

only half a Smith chart is represented limits its uses. The

network in Fig. 5 can be readily expanded to include the lower

half plane of the Smith chart by adjusting the parameters in

Table I. However, it can be observed that, when a full Smith

chart (Fig. 4) is considered, a neuron IV[i, j] (N’ [i, j]), when

excited by an external input, sends two excitatory signals to

its companion neuron N’ [i, j] (IV[i, j]), one through the row

interconnection and one through the column interconnection.

A solution is provided here for the completeness of the

discussion. In order to remove the redundant excitatory signal

Fig. 8.

circuit

E
External 2 No,j]
input

-1

-1

External ~ N’~, j]
input

Fig. 9. The input relationship between a pair of companion intersection
neurons.

between a pair of companion neurons, the external input of

a neuron N[z, j] (N’ [z, j]) is also “sent to N[i, j] (N’ [z, j!)

through a connection weighted negative one (– 1) so that the

effect of the redundant excitatory signal is canceled. This is

demonstrated for a pair of neurons N [i, j] and N’ (i, j] in

Fig. 9.

V. PRACTICAL IMPLEMENTATION

The drawbacks of the computing network shown in Section

IV can be removed by a simple modification. In Fig. 5, a

neuron has two responsibilities, calculation and result in-

dication, which are distributed to two separate neurons in

this modification. In the network shown in Fig, 10, each

intersection neuron consists of a display neuron (D) and

a calculation neuron (C). All the C’-neuron outputs in a

row/column are connected to a summation unit (Z) which

sends the result to all D-neurons in the same row/column as

an excitatory signal. As shown in Fig. 11, this is equivalent

to exciting the receivers of the summation unit by all its



1092 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 5, MAY 1995

i!!%
iid I D

c . z ...@...@

c . . z ..@..@

43-(3

43-43

4343

-4343

-43-(3

Fig. 10. A practical implementation of a dkibuted computing network

showing the result of designing an impedance matching circuit.

contributing C-neurons. Each pair of D- and C-neurons at

the same location share a common external input (not shown)

which can be set by a user. Other than these modifications, the

distributed computing network follows the topology shown

in Fig. 4. The parameters for programming this distributed

computing network are given in Table II. The important feature

of this implementation is that the separation of the calculation

and the display functions into two neurons eliminates the need

of tracing, The other shortcomings of the network described

in Section IV are also eliminated.

The distributed computing network of Fig. 10 is used to

solve an impedance matching problem given in Fig. 12. It is

required to match a circuit with an intrinsic impedance of 2; to

20 = 1 using the T-network shown. A suitable inductance L1
is first selected, and the impedance jwL1 + Zi is represented

by, say neuron C[2, 3]. As explained in Section IV, the

inhibitory auxiliary neuron in the pure resistance/conductance

line is turned on by an external input for an impedance

matching operation. The D- and C-neurons at both locations

C[2, 3] (the original impedance) and C[4, 4] (ZO = 1) are

turned on at t = T by their external inputs. As shown in

d&-Q-@
Ill

-1 -1

,1 ,1

,1 ,1

,1 ,1

,1 ,1
I

Fig. 11. The relationship between a summation unit and its associated

neurons.

TABLE II

PARAMETERSFOR THE DISTRIROTED COMPUTING NETWORK SHOWNIN FIG. 8

Thresholds

D-neuron, C-neuron, irrhibito~, or excitatory auxiliary neuron 1.5

Time Constants

D-neuron or C-neuron 17

Inhibitory or excitatory auxiliary neuron 0.5T

Weighting Factors

Exremal input + D-neuron, C-neuron 3

External input + inhibitory or excitatory auxiliary neuron 2

Excitatory auxiliary neuron + D-neuron 1

IuhibitO~ auxiliary neuron + D-neuron -1

C-neuron + D-neuron 1

-’YIN’-r~
2.= 1 Zi

Fig. 12. An example impedance matching problem.

Intrinsic

circuit

Fig. 10, the summation units of row 4 and column 2 will turn

on- the D-neurons D[4, 3], D’[4, 3], D[2, 4], and D’[2, 4]

at t = 2T. The impedance/admhtance values at these four

intersection points give four different impedance matching

circuits. Under the topology constraint set by the T-network,

only D’ [2, 4] is the valid solution and the values of Cl

can be determined by the susceptance difference between the

admittance values at D[2,3] and D’[2, 4] and L2 can be

determined by the reactance difference between the impedance

values at D’[2, 4] and D[4, 4].

Alternatively, the distributed computing network can be

used to design a stabilizing circuit. In Fig. 13(a), suppose

that the resistance circle j = 2 is the boundary of the

unconditionally stable region. The inhibitory auxiliary neuron

of row 4, which corresponds to the conductance circle that

goes through 20 = 1, is turned on by its external input. The

excitatory auxiliary neuron of column 2 and neuron IV [4, 4]

(ZO = 1) are turned on by their external inputs. Neuron D[6,
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computing network of Fig. 10 to design a

2] is turned on at t = T by the summation units of column 2

and the resistance/conductance line. The resistance difference

between the impedance values at D[4, 4] and D[6, 2] indicates

the resistance that is needed to be added (in series) for the

purpose of stabilization.

Similarly, assume instead, that a conductance circle i = 1 is

identified as the boundary of the stable region. In Fig. 13(b),

the inhibitory auxiliary neuron of column 4, which corresponds

to the resistance circle that goes through Zo = 1, is turned

on by its external input. The excitatory auxiliary neuron of

row 1 and neuron C[4, 4] (ZO = 1) are turned on by their

external inputs. Neuron D [1, 6] is turned on at t= T by the

summation units of row 1 and the resistance/conductance line.

The conductance difference between the admittance values at

D[4, 4] and D[l, 6] indicates the conductance that is needed

to be added (in parallel) for the purpose of stabilization.

VI. SUMMARY

In summary, this paper describes the first attempt at applying

a massively distributed computing network to microwave
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analysis and design. An intuitively simple mapping scheme

is provided to program a distributed computing network to

perform typical operations on a Smith chart. Examples to

show how this computing network can be programmed to

design impedance matching circuits and stabilizing circuits

are given. The major benefit of this approach is the speed

brought by its parallelism when it is implemented on a VLSI

application specific processor. Ongoing research motivated by

the encouraging results of this paper includes the extension

of this technique to perform an in-circuit., real-time adjustable

broadband impedance matching. In addition, other design and

analysis tasks such as optimizing the noise figure and the gain

of an amplifier are also being investigated.
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